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In this paper we will give a simple approach to determining conditions
for stability of linear feedback systems subject to additive and multipli-
cative perturbations in the operators describing these systems. The approach
is based on techniques used in functional analysis, and provides an alternative
development and generalization of some conditions for the time - invariant
case that have appeared in the literature very recently. As an example of
the application of the conditions, we consider the determination of finite

regions of stability for singularly perturbed systems.,

1. Introduction

an important theme in system theory is the preservatiocn of various

system theoretic properties in the face of variations in the system model.

* This research was supported by the Departme

A preliminary version of the paper was presen
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nomiral system medel. Thug cne 2egins by assuming that the nominai svstam
nas a certain prorerty, and ther as<s 1f there 2xists an cpen set ahout the
nominal system parameters such %iat all the systems with parameters in this
set have the desired property, = will refer to investigaticns cof tnis first

type as sensitivity theory. A second approach requires the explicit delineation

of finite regions of models about the ncminal model feor which the given
property is preserved. We will refer tc investigaticns of this second tvpe

as robustness theory.

Within the context of sensitivity or robustness theory, there
are several properties that have been investigated, For example, it is
well known that the controllability property is insensitive to small para-
meter variations [1l,p., 43]. As another example, it is well known that
type-l servomechanisms have zero steady state step tracking errcr despite
large (but not destabilizing) variations in their transfer function matrices
[2}.

In this paper we will focus on the rchustness of the stability
property of linear multivariable feedback systems. This subject is of special
interest, since stability is the most basic system theoretic issue and since
practical feedback systems must remain stable in the face of large para-
meter variations.

The importance of obtaining robustly stable feedback conﬁrol
systems has long been recognized bv designers (3]. Indeed, a principal

reason for using feedback rather than open-loop control is the presence of




model uncertainties. Any model is at best an approximation of reality, and
the relatively low order, linear time-invariant models most often used for
controller synthesis are bound to be ratiier crude approximations.

In classical frequency domain techniques for single-input, single-cut-

put (SISO) control system design, the robustness issue is naturally handlad [(3].

These techniques employ various graphical means (e.g., Bode, Nyquist, inverse-
Nvquist, Nichols plots) of displaying the system model in terms of its frequency
response. From these plots, one can determine by inspection the minimum charge
in the model fregquency response that leads to instability. These changes are
often quantified by the gain and phase margins of the feedback system; sometimes
the design is required to have certain minimal margins in order to be acceptable
{4, p. 43}.

In modern time domain techniques (such as the pole placement or
linear-quadratic~Gaussian approaches) for multiple-input, multiple-output
(MIMO) systems, the robust ess issue is not directly dealt with. Instead, it
is necessary to transform the resulting design to the frequency domain to examine
its robustness properties. For SISO systems, this is accomplished as for
classical designs, but the situation is less clear in the MIMO case, where it
is necessary to consider simultaneous variations in the frequency responses
of all the loops.

Very recently, there has been some important work addressing the
multivariable robustness issue. In his thesis [5,6] Safonov gives a powerful
approach, based on a multivariable sector stability theorem, that can characterize
robustness for very general nonlinear MIMO feedback systems. In a recent paper
(7], Doyle develops a robustness characterization for the linear time invariant

MIMO case (It can be shown that Doyle's result can also be obtained by Safonov's

TR T —w ~ <




approach [8].) Doyle's characterization involves computing the minimum singular
value of a certain t¥ansfer function matrix, and this computation essentially
determines the minimum simultaneous variation of the svstem frecuency resconses
that leads to instability. Since there is sophisticated and widely accessible
software to compute singular values [9], this characterization is of great
oractical value.

The present paper is prompted by two observations. First, the use
of sinqular values to characterize robustness is suggestive of connections with
numerical analysis, but these connections are not clear Zrom Doyle's approach
utilizing the multivariable Nyquist theorem. Seccnd, a specific instance of the
robustness question arises when a system is approximated by making a singular
perturbation to reduce its order. A related motivation, although only briefly
discuésed in this paper, arises from the desire to use multi-model techniques in
the design of decentralized controllers for large scale systems [10,11]).

The structure of this paper is as follows. In Section 2 we consider
the robust stability of MIMO linear feedback systems using a generalized numerical-
analytic approach. When specialized to the time invariant case, with
rational transfer function matrix perturbations, Doyle's characterization
results. In Section 3 we will apply the results of Section 2 to a specific
robustness question arising in singular perturbation theory. Section 4 contains

the summary and conclusions.

Notation
We will use the standard notation of input-output stability theory:

see (12, pp. 13-14}], oxr (13, pp. 38=-39].

X = gome Banach space of functions x:T -+ X

T = gubset of the real numbers
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X = finite dimensional vector space i DDC TAB
. Unazmounceq
X = { s xe X f 11 cT} ! Justi i
e T X F or a 1€ | fication
x(t) t < T
(Pex) (£) = { bl
0 t > T
5?2 = space of m-vector functions on T
with integrable Cuclidean norm
I Xe - Xe = 1identity operator
G : X X is causal if P GP_ = P
e T T

for all 1

A* = conjugate transpose of a complex
matrix A.
2. Robust Stability of Linear Systems

We consider the feedback system depicted in Figure l. Here

. m
the causal linear operator G : ‘gge - Qae represents the plant
plus any compensation that is used. The basic feedback equation
is

(I +Gle = u (2.1)

. Lq s . . Ay =1 m m

and the basic stability question is whether (I + G) =£Z§e *Poe

exists, is causal, and is a tounded linear operator when restricted to the

PP R S — i
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Figure 1.

Basic MIMO Linear Feedback System
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subspace 5?2 of 5%;. We will assume that the nominal system is stable in
. . o . . m X .
this sense throughcut this section, 1.2. for u ¢ g?Ze there exists a unigue

causally related e E,‘Z};e satisfying (2.1), and that u eg); implies that the

corresponding eES?: and conseguently vy = u-e s&?;. We are interested in
whether the closed loop system retains these properties when subject to
additive (Figure 2) or multiplicative (Figure 3) perturbations representinc
uncertainty in the dynamical behavior of the system.

The following theorem provides the basis for our analysis.

THEOREM 1

. -1
Let A: Xe - Xe be a causal linear operator, and suppose A

exists, is causal, and is bounded when restricted to X . Then, if
AA Xe - Xe is a causal linear operator that is bounded when restricted

to X , and if

A7l < 1, (2.2)

1

it follows that (A + AA) — : Xe - Xe exists, is causal and is bounded when

restricted to X.

Proof

-1
The operator A "AA is well defined, causal, and bounded on X
by assumption. Since ;lA-lAAIIX < 1, the contraction mapping theorem

implies that the sequence X k =0,1..., defined by

-1, )
X = -A AAxk + b; xo 0 (2.3)

converges to a unique solution xeX of

WAL > —
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Figure 2. System Subject to Additive Perturbations
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Figure 3. System Subject to Multiplicative Perturbations




-10-

I+ A Ak = b (2.4

1 -1

for any b £ X, Thus(l + A 4, : X » X exists, and is therefore tounded

since I + A "_A is. Causality follows since each itarate X, depends causallw

on b and consequently the limit x of xk derends causally on k. Since

- ~1 .
(I + A %AA) is causal, it can be unigualy extended to X by requirirng

P+ ATl = P (T + A-lAA)_lPTx (2.5)
for x € X . Finally, defining
A+ a0 = (1 e ATy T (2.6)
gives the required inverse of A + LA, Q.E.D.
Remarks
1. S3ince
ATRA L < ATH Tlaaid, (2.7)
a sufficient condition for (2.1) is
AT, H8Ally < 1. (2.8)

2. A basic result in numerical analysis is that if an nxm matrix A

is invertible, then A + AA is invertible for all AA satisfying
G(AA) < g(A) (2.9)
where T(AA) = [|aa[{,, g@) = (jja "] )

are respectively the smallest and largest singular values of the matrix a.

| 1
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Theorem 1 is thus a gensralization of this classical finite dimensioral result wherz,
of course, boundedness and causality are not at issue. In the finite dimensicnay
case there exists LA such that Z(XA) = CT(a) and A + 1A 1s singular; this is

. . . R S
easily proved by the singular value decomposition

3. The contraction mapping argument in Theorem 1l is a standard technigue of
applied mathaematics; the fact that Xeis not a Banach space complicates the arcument.
The causality argument has been used by Willems (12, p. 98] in a slightly

different context. The linearity of the perturkation operator is not essential.

4. Theorem ]l can be used to gGive Q; robust stability results, but we will

confine ouselves to the case p = 2 in the sequel.

5. Theorem 1 can be used to obtain robust stability results for both
continuous and discrete time, but in the sequel we will confine our attention

to the case T = [0,%].

The robust stability questions posed at the bheginning

of this section are now answered in terms of Theorem 2.

THEOREM 2

Assume that the basic feedback system of Figure 1 is stable. Then

(i} the system remains stable for additive pertubations G (Figure 2) provided

(1 +6 " tag *':z’“ < 1 (2.10)
2

and (ii) the system remains stable for multiplicative perturbations AG (Figure 3)

l’I‘he singular value decomposition of an nxn nonsingular complex matrix A is
A=ULV*, where U and V are unitary nxn matrices, I = diag (0,, ......,J3 ) and
the singular values g, are the non-negative square roots of %he eigenva?ues cof
A*A. See (l14] for references, a more general definition, and an excellent
discussion of the fundamental role of the singular value decomposition in linear
systems theory.

m:, 4?/’—'- "*"——*w —
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provided
Pl ‘l .
ST - +6) 1l m o<1 (2.11)
' [ .l’([’)
Proof

For case (i), we apply Theorem 1 to the ecuation
(I +G +AG)e = u (2.12)

while for case (ii) we consider

(I+G(I+20) Je = (I+G+(I1+0) 262Gy = u. Q-E.D. (2.13

The practical importance of Theorem 2 stems from the fact that the
m . . . -
597 norm of a linear convolution operator can be computed from its transfer

function matrix. This fact, which is a consequence of Parseval's Theorem,

1s well known in the input-output stability tnecretic literature; see,

e.g., [13, p. 26].

Lemma 1

Let the operator G: .9? -*5?? for T = [D,»] be d2finei by

-

Gx)(t) = G(t-T) x(T)at (2.14)

o
where the elements of the impulse response matrix G(t) are assumed

absolutely integrable on T. Then

LGl =
k[G[:gx;. O nax (2.15)

where

(2.16)

= . (G (5
7 max w20 i< 0y (G130
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and where 0. (G(jw)) denctes the ith singular value of the transfer function
i
matrix corresponding to G.
Combining Thecrem 2 and Lerma 1, we obtain the Zollowing result.

THEOREM 3

Assume that the nominal system in Figure 1 is time invariant, stable,
ﬂ-l -~ .
and that the operators (I1+G) *,AG  can be represented as convolution
operators with impulse response matrices with absolutely integrable elements.

Then (i) the svstem remains stable for additive perturbations 4G satisfving
TAG(IW)) < T(I+G(jw)), « >0 (2.17)

and (ii) the system remains stable for multiplicative perturbations

satisfying
TAG(Hw) )< o (I+6 T (3w)), w > o. (2.18)

Here G(jw) and AG(3w) are the transfer functions of ¢ and AG, and

0 (A) and U (A) denote the maximum and minimum singular values of A.

Proof

(i) From Lemma 1 and (2.17) we have

-1, -1
a6 < [la+6 7|, (2.19)
so that
[ 26)7Y | |1a6]] < 1. (2.20)
(ii) Note that
- — -1, .- -1
o (146 (5w = {o((nc- L™ }
- . -1 . -1 _ . -1
= { o [(I+G(jw)) G( Jw) ] = o[I-(I+G(jw)) ] (2.21)

Therefore Lemma 1 and (2.18) imply that
T - a0 i a6l < 1. (2.22)

Q.E.D.

T R T —~w ~




Remarks

1. Notice the analcgy between Theorem 3 concerning robust stability of

linear svstems and the classical result guo

tel nrevicusly Concerning robust

N

1nversion of matrices (or bcunded crperators!.

2. Theorem 3 for the case of rational transrer function matrices is =ne

2sult of Doyle alluded to previously. Dovie's proofl is completely different,

re

nowever, depending on tne multivariable Nyguist Theorem, so that the connect:ions

with the inversion issue are only implicit.

3. The quantity J (I+G()) orfz(I+G—l\j~)) is easily computed and ploctzed
as a function of w. Dcyle has made great use of this technique 1in thes anaivsis
of multivariable feedback systems. Such a nlot oplays much the same

role for determining MIMO robustness properties as the more classicai Bode,

etc. plots in SISO design.

4. The quantity gfl (I+G(iw)) is the generalization of the classical Bode
SISO sensitivity function of changes in the closed-loop transfer function with
respect to changes in the open-loop transfer function in the following sense.
Let yl denote the output of the system of Figure 1 for a given input and

vy the corresponding output of the system of Figure 2 for the same input.

Then one can show

v () - vyGw) = (I+6(jw) ~2AG(50) (6(iw) + AG(jw))-lyz(jw)

(2.23)

50 that

Hyy )=y, G | < 1603 (I+G(Jw) + 26w "] x

!
{

J(I+G(jW)) ¥

Hy, Gl (2.24)

Consequently, the percentage change in the closed-loop transfer function

matrix is attenuated from the percentage change in the open loop transfer
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function matrix by the facrtor 3 “(1 - 3(3.0)

5. On the other ihand, the perturbations defining the SISC gain and

, . . . . . .-l
pnase margins are multiplicative rather than additive, so that Z{I + 3

1s more appropriate as a measure of the tolerance of the feedback syszem

to model uncertainty.

6. It is in general impossible to express J(I + G-l(jm)) in terms of
g(I + G(jw)k
7. Consider the feedback system in Ficure 1 with

1

G(s) = -G(sI - A) B (2.25)
where

G = B'K (2.26)

0 = A'K + KA +C'C - KBB'K (2.27)

(We assume [A,B] controllable and [A,C] observable so that a unique positive
definite solution of (2.27) exists.) The well known equality [15]

[T +G(~sI - &) 2B]' [I +G(sI -a) 1B] =1+ Ic(-sx-A)'lB]' ic(s1 - &) ts),

(2.28)

which follows from (2.27) after a little manipulation, shows that the system

is robust to additive pertubations. Safonov and Athans [6] have shown that

the system of Figure 3 with G(s) defined by (2.25)is stable for AG(jw) satisfying
G(AG(jw)) < 1/2 for all w >0;

this can also be inferred directly using the inequality {19]

a(I + G(jw))

-1
g(I + G " (jw)) > 1+ a(f +c() . (2.29)

together with (2.28) and Theorem 3.




3. Application to Singular Perturkbation Theorw

In the previous section we nave discussed the robustness of the stap:licty

vrorerty of a linear dynamic system to> mcdel variazions. In this se~tior we

w111l -onsider a particular form of mcdel variation due to a singular certurtation.’

[N

We consider systems of the Zorm

xl‘t) = All l‘t) + Alzxzxt)
. (3.1}
sxzxt) = Alel(t) + Azzx:\:)

where €>0 is a small parameter, anrd 1t is assume that the matrix A is

22
stable (has eigenvalues with negative real parts). We define the so called
Jdecenerate system
x, () = (A _ -2 _Ala )x (v (3.2)
1d i1 12722 721" 14 '

associated with (3.1). This system is a reduced order system that neglects
certain high-frequency or parasitic effects incorporated in the model (3.1).
It has been shown that the stability of (3.2) (in the sense that the eigen-
values of the system matrix have negative real parts) is insensitive to these
effects in the sense that there exists s°>0 such that (3.1) is stable for
all O<E<€° if (3.2) is [17)}. We propose to examine the robustness of the
stability (in the input-output sense of Section 2) of (3.2) to the parasitic
effects present in (3.1).

We begin by Laplace - transforming eguations (3.1l) (assuming zero initial

condition).

See (16] for an excellent survey of results in singular perturbation theory.

l




x () = (I = A )70 A x(s) (3.3)
x (s) = (2T - A ) " A x (s)
2 22 2171
= I - esiest - Ay tyieatts ) 3.4
= | £s(e€sl - Asy (= 22n21)xl(s (3.4)

To apply the input-output stability results of the previous section it is
necessary to apply a test input to the system. This is most conveniently

done as illustrated in Figure 4, although other locations are possiblel.
Figure 4 closely resembles Fijure 3 with

Ly sr-a ta (3.5)

Gls) = Ay, Ay 11 12

- = —ra(e _ -1
AG(s,e) = £s(esI AZZ) (3.6)

except that the perturbation is post-multiplicative rather than pre-
multiplicative. However, assuming G(s) has full rank as a rational matrix,
it is easily verified tnat the analysis of the preceding section is essentially

unaffected. Thus we have the following result.

To insure the equivalerce of the input-output stability analysis with the
condition that the system matrix of (3.1) has eigenvalues with negative real
parts, it is necessary to have the conditions

A A A

11 12 12
, controllable,
A B °
€ € L
(0 2 et A2
, observable.
Aol A
| € £
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Figure 4. Singular Perturbation in the Frequency Domain.
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THEOREM 4

Assume that the system of Figure 4 is stable for € = 0. Then it remains

stable for all € > O satisfying the inequality

T(AG(§w,E)) < O(I + G (jw)) (3.7)
for all w>0.

The use of Theorem 4 is illustrated by the following examples.

Example 1

x,(t) = x (t) + 2 x_(t)
1 1 2 (3.8)
Exz(t) = -xz(t) - xl(t)
2
Gls) =5 (3.9)
_ _Es
AG(sie) = (3.10)

In this case for which G and AG are scalars, the condition (3.7) is
equivalent to

1+ crw i > leiw.el] (3.11)
or

1+ 6(im ] > |6(iwaG(3w,e) (3.12)

for all w>0.

The condition (3.12) has an interesting granhi~al interpretation.
Specifically the Nyquist locus of G(jw) must avoid the critical point -1
by at least the distance lG(jw)AG(jw): (Figure S). It is easily verified
that for € =+1 and w = v2, we have !l + G(jw): = 'G(jm)AG(jm)l so that

eo = 1. It can be directly verified that the system (3.8) becomes unstable

for ¢ = 1,
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AIm Gljw)
-1
o >
Re G(jw)
|6(jw) AG(jw)]

Figure 5. Illustrating the Condition (3.12).




Example 2
;l = Xt X,
5;2 = - X -ox
Gls) = ;%I
AG(s,E) = li:s

As in the previous example, we will check (3.12).

/£;w2 > 2 >1

EW

> —
- - v5+ € w"
so that the system is stable for all € > 0!

We have

(3.16)




summary and Jonclusicns

da

In this raper we nave censidered the robustness ¢f the stability
crogperty of a linear feedback syscem TO variatlons in the system mcdel.

The approach was to generalize a Iundamental result in numerical linear
algebra concerning robust inversicon ¢f matrices to linear operatcrs of

the type arising in input-output stability theory. In the time-invariant
case, this approach specializes to give sufficient conditions for stability
under additive and multiplicative perturbations tha%t are easily verified

vy computing the singular values of certain transfer function matrices.

vle then applied the robustness condition to the analysis of singularly
perturbed systems. We were able to give an exgplicit, rsadily computable
bound on the magnitude of the perturbation jarameter £ that can be tolerated
and still have a stability analysis of the reduced system valid for the full
system.

The results of this paper are felt to ke of interest for two resasons.
First, as Doyle has previously pointed out 1in the time invariant case [7],
the characterization and design of robustly stable MIMO feedback systems
is a fundamental problem in control thecry that has yet to be completely
resolved. Second, as has been previously emphasized by Zames [18] and Safonov
{51, a fundamental problem in largeﬂscale system theory is to give conditions
for the success of designs based on multiple, aggregate models of a single

large system - this is essentially & robustness problem.
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